Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Sci Rep ; 14(1): 3564, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346991

RESUMO

Passiflora edulis, commonly known as passion fruit, is a crop with a fragrant aroma and refreshingly tropical flavor that is a valuable source of antioxidants. It offers a unique opportunity for growers because of its adaptability to tropical and subtropical climates. Passion fruit can be sold in the fresh market or used in value-added products, but its postharvest shelf life has not been well-researched, nor have superior cultivars been well-developed. Understanding the proteins expressed at the tissue level during the postharvest stage can help improve fruit quality and extend shelf life. In this study, we carried out comparative proteomics analysis on four passion fruit tissues, the epicarp, mesocarp, endocarp, and pulp, using multiplexed isobaric tandem mass tag (TMT) labeling quantitation. A total of 3352 proteins were identified, including 295 differentially expressed proteins (DEPs). Of these DEPs, 213 showed a fold increase greater than 1.45 (50 proteins) or a fold decrease less than 0.45 (163 proteins) with different patterns among tissue types. Among the DEPs, there were proteins expressed with functions in oxygen scavenging, lipid peroxidation, response to heat stress, and pathogen resistance. Thirty-six proteins were designated as hypothetical proteins were characterized for potential functions in immunity, cell structure, homeostasis, stress response, protein metabolism and miraculin biosynthesis. This research provides insight into tissue-specific pathways that can be further studied within fruit physiology and postharvest shelf life to aid in implementing effective plant breeding programs. Knowing the tissue-specific function of fruit is essential for improving fruit quality, developing new varieties, identifying health benefits, and optimizing processing techniques.


Assuntos
Frutas , Passiflora , Frutas/química , Proteoma/metabolismo , Passiflora/química , Melhoramento Vegetal , Antioxidantes/metabolismo
2.
Carbohydr Polym ; 326: 121578, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142064

RESUMO

This work evaluated the efficiency of Subcritical Water Extraction (SWE) and Pressurized Natural Deep Eutectic Solvents (P-NaDESs) under different temperatures (100, 120, 140 and 160 °C) in obtaining pectin from Passion Fruit Rinds (PFR) and its residual biomass (PFR - UAPLE), and compare the results with those of Conventional Extraction (CE). The highest pectin yields, 19.1 and 27.6 %, were achieved using P-NaDES (Citric Acid:Glucose:Water) at 120 °C for PFR and its PFR-UAPLE, respectively. Regarding the Degree of Esterification (DE), pectin obtained with SWE and CE had DE below 50 %, while with P-NaDES (Citric Acid: Glucose:Water), DE was above 50 %. Higher Molecular Weights (MW) (98 and 81 kDa) were obtained with SWE and P-NaDES from PFR compared to PFR-UAPLE and CE. Galacturonic acid was the most abundant (74 to 78 %) monosaccharide obtained by SWE. In terms of morphology, water extraction provided pectin with more uniform textures, whereas extraction with acidified mixtures led to more heterogeneous surfaces. Overall, comparing SWE and P-NaDES, the obtained pectins differed in terms of monomeric composition, MW and DE. These results indicate that pectins obtained by both methods can have different applications depending on their structural characteristics.


Assuntos
Passiflora , Pectinas , Pectinas/química , Água/química , Solventes Eutéticos Profundos , Passiflora/química , Frutas/química , Glucose/análise , Ácido Cítrico , Solventes
3.
J Food Sci ; 88(10): 4046-4058, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37602822

RESUMO

Passion fruit is a tropical fruit that has plenty of fruit fragrance. During storage, passion fruit quickly loses water, resulting in its poor quality. Researching the mechanism of water loss contributes to prolonging the storage time. In this study, passion fruit was stored at 7 or 25°C to analyze the relationship between epidermal structure and water migration. The epidermal wax and structure of passion fruit began to show signs of destruction from the middle stage (day 8) during storage. The mobility of free water was decreased at 7°C and increased at 25°C in passion fruit from the middle stage of storage (day 8). The migration rate of free water in passion fruit stored at 7°C was lower than that at 25°C. The mobility of immobile water was weaker in the late storage period but that of bound water changed barely. These results showed that the migration of free, immobile, and bound water had a connection with the epidermal structure. Incomplete epidermal structure promoted water loss in passion fruit, with the most pronounced loss of free water. PRACTICAL APPLICATION: Maintaining the epidermal structure of passion fruit well can decrease the water loss ratio. Passion fruit stored at low temperatures could better sustain the integrity of epidermal wax and structure; it was able to change the water migration rate in the epidermis of passion fruit, which was conducive to maintaining the water content.


Assuntos
Frutas , Passiflora , Frutas/química , Passiflora/química , Água/análise , Epiderme
4.
Food Chem ; 428: 136825, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441935

RESUMO

Passiflora, also known as "passion fruit", is widely grown in tropical and subtropical regions. It is not only eaten raw but is also widely used in processed foods. Various extracts, juices and isolated compounds show a wide range of health effects and biological activities, such as antioxidant, anti-inflammatory, sedative, and neuroprotective effects. In this review, we not only review the phytochemical properties of Passiflora but also highlight the potential of Passiflora for food applications and the use of all parts as a source of ingredients for medicines and cosmetics that promote health and well-being. This will provide theoretical support for the integrated use of such natural products.


Assuntos
Passiflora , Passiflora/química , Promoção da Saúde , Frutas/química , Fenóis/análise , Antioxidantes/análise
5.
Int J Biol Macromol ; 243: 125229, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301339

RESUMO

The objective of this study was to simultaneously extract passion fruit (Passiflora edulis) peel pectins and phenolics using deep eutectic solvents, to evaluate their physicochemical properties and antioxidant activity. By taking L-proline: citric acid (Pro-CA) as the optimal solvent, the effect of extraction parameters on the yields of extracted passion fruit peel pectins (PFPP) and total phenolic content (TPC) was explored by response surfaces methodology (RSM). A maximum pectin yield (22.63%) and the highest TPC (9.68 mg GAE/g DW) were attained under 90 °C, extraction solvent pH = 2, extraction time of 120 min and L/S ratio of 20 mL/g. In addition, Pro-CA-extracted pectins (Pro-CA-PFPP) and HCl-extracted pectins (HCl-PFPP) were subjected to high performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), thermogram analysis (TG/DTG) and rheological measurements. Results verified that the Mw and thermal stability of Pro-CA-PFPP were higher than those of HCl-PFPP. The PFPP solutions featured a non-Newtonian behavior, and compared with commercially pectin solution, PFPP solution exhibited a stronger antioxidant activity. Additionally, passion fruit peel extract (PFPE) exhibited stronger antioxidant effects than PFPP. The results of ultra-performance liquid chromatography hybrid triple quadrupole-linear ion trap mass spectrometry (UPLC-Qtrap-MS) and high performance liquid chromatography (HPLC) analysis showed that (-)-epigallocatechin, gallic acid, epicatechin, kaempferol-3-O-rutin and myricetin were the main phenolic compounds in PFPE and PFPP. Our results suggest that Pro-CA can be considered as an eco-friendly solvent for high-efficient extraction of high-value compounds from agricultural by-products.


Assuntos
Passiflora , Pectinas , Pectinas/química , Antioxidantes/química , Passiflora/química , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis/análise , Solventes/química
6.
Chem Biodivers ; 20(5): e202201051, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37032441

RESUMO

The stilbene-rich acetone fraction in high yield (6.6 %, PEAS) of Passiflora edulis Sims was prepared and evaluated for neuroprotective activity in murine Alzheimer's disease model induced by aluminum chloride and D-galactose. The phytochemical and HPLC-DAD-MS analysis of the polyphenolic stilbene-rich acetone fraction showed that it contained different stilbenes including trans-piceatannol, scirpusins A-B and cassigarol E. The total phenolic content (TPC) of PEAS was 413.87±1.71 mg GAE eqv/g. The neuroprotective activity of PEAS is typically presented in the Morris water maze-reference Spatial Memory test, where the Alzheimer's mice treated at 100 mg/kg (Alz-ED1) and 200 mg/kg (Alz-ED2) spent less than 47 % and 66 % of the time, respectively, than the Alzheimer's model mice (Alz). Two simple stilbenes, trans-piceatannol and trans-resveratrol, showed selectively inhibitory activity in silico against acetylcholinesterase (AChE). Two stilbene dimers, cassigarol E and scirpusin A, exhibited low nanomolar inhibitory potential against AChE and butyrylcholinesterase (BChE), significantly lower than those of the positive control, donepezil and tacrine. These findings suggest that the stilbenes from P. edulis seeds, particularly the stilbene dimers, warrant further investigation as potential neuroprotective candidates in the prevention of cognitive deficits associated with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Passiflora , Estilbenos , Animais , Camundongos , Acetona/análise , Acetilcolinesterase/química , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Passiflora/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Sementes/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico
7.
Food Chem ; 417: 135786, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921365

RESUMO

This study aimed to systematically investigate the changes in peel color, physicochemical characteristics, textural properties, and peel ultrastructure between CaCl2-treated and water-soaked passion fruit under short-term storage at room temperature (20 °C) for eight days. The fruit peel was further analyzed and compared for the differences in calmodulin (CaM) gene expression between the two groups. The data were analyzed using principal component analysis. The results confirmed that CaCl2 treatment effectively maintained the appearance and color of passion fruit, inhibited peel browning, and improved fruit quality. The treatment had an effect on maintaining the physiological properties of passion fruit parenchyma, effectively delayed the passion fruit senescence, and kept the structural integrity of the fruit peel. The relative expression of PeCaM gene in the CaCl2-treated fruit peels was higher than that of the control peels. The Ca2+ stimulated the relative expression of the PeCaM gene, which delayed the senescence of passion fruit.


Assuntos
Frutas , Passiflora , Frutas/química , Cloreto de Cálcio , Passiflora/química
8.
Food Res Int ; 166: 112626, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914332

RESUMO

The Passiflora genus (Passifloraceae family) extends worldwide, but it is mainly found in the Americas. The present review aimed to select the main reports published over the last 5 years involving the chemical composition, health benefits, and products obtained from the pulps of Passifora spp. The pulps of at least 10 species of Passiflora have been studied presenting different classes of organic compounds, especially phenolic acids, and polyphenols. The main bioactivity properties include antioxidant and in vitro α-amylase and α-glucosidase enzyme inhibition. These reports highlight the potential of Passiflora for the development of a variety of products, especially fermented and non-fermented beverages, as well as foods to attend a demand for non-dairy products. In general, these products are prominent source of probiotic bacteria resistant to in vitro gastrointestinal simulation, representing an alternative for intestinal microbiota regulation. Therefore, sensory analysis is encouraging herein, as well as in vivo tests to enable the development of high value pharmaceuticals and food products. The patents confirm the great interest in research and products development in different food technology areas, as well as in biotechnology, pharmacy, and materials engineering.


Assuntos
Passiflora , Passiflora/química , Frutas/química , Antioxidantes/análise , Polifenóis/análise , Bactérias
9.
Food Res Int ; 164: 112441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738006

RESUMO

The species of the genus Passiflora (Passifloraceae family) have been used as food, cosmetic and traditional herbal. As a result, the Passiflora species are widely cultivated and has an economic, medicinal and ornamental importance. The popular designation as "passion fruit" and chemical profile of several Passiflora species remains unknown. The lack of chemical information contributes to the erroneous classification and adulteration. In recent years, special attention has been paid to the bioactivity and phytochemical profiles of several Passiflora species extracts. In this research, 1H NMR-based metabolic profiling coupled with chemometric tools was used to characterize and distinguish extracts obtained from different wild Passiflora species (P. alata, P. cincinnata, and P. setacea) and genetic varieties (P. alata var. BRS Pérola do Cerrado, P. cincinnata var. BRS Sertão Forte, and P. setacea var. BRS Pérola do Cerrado). Fourteen metabolites were identified by 1D and 2D NMR experiments, highlighting the presence of fatty acids, carbohydrates, saponins, alkaloids, and mainly C-glycosidic flavones. Principal components analysis (PCA) allowed discrimination of Passiflora extracts, which the quadranguloside, oleanolic acid-3-sophoroside, α-glucose, ß-glucose, and vitexin-2-O"-rhamnoside were relevant in the differentiation of P. alata and P. alata var. BRS Pérola do Cerrado, while the flavones isovitexin and isovitexin-2-O"-xyloside were dominant in the grouping of P. setacea and P. setacea var. BRS Pérola do Cerrado, and finally P. cincinnata and P. cincinnata var. BRS Sertão Forte grouped by the influence of the fatty acids, sucrose, flavones (isoorientin and vitexin-2-O"-xyloside), and trigonelline. The varieties of P. setacea, and P. cincinnata are chemically equivalent to the original Passiflora species. However, the PCA analysis showed that the genetic variety of P. alata occupied a different position in the scores plot provoked mainly by the presence of oleanolic acid-3-sophoroside. The 1H NMR metabolic profile can be efficient for quality control evaluation, and can contribute to the investigation of new alternatives for official Passiflora herbal medicines.


Assuntos
Flavonas , Ácido Oleanólico , Passiflora , Passiflora/genética , Passiflora/química , Quimiometria , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Graxos , Extratos Vegetais/química , Metaboloma , Glucose
10.
Drug Chem Toxicol ; 46(4): 640-649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35589671

RESUMO

Passiflora cincinnata Mast. is described as a native Caatinga species, used by nutritional and medicinal purposes, although there are still few studies and pharmacological data related to this species. This paper aims to evaluate the safety profile and hypolipidemic potential of the fruit peel of this species in mice. It was analyzed the chemical composition of ethanolic extract (EtOH-Pc) by HPLC-DAD-MS/MS, and the organic and inorganic composition of flour (MF-Pc). Also were evaluated the acute toxicity, the lipid-lowering potential of these samples, through of a pretreatment (oral: 100 and 200 mg/kg), and a single treatment with the same doses, after hyperlipidemic induction with triton WR-1339, using as animal model Swiss Mus musculus mice, besides histopathological analysis. The presence of flavonoids in the extract was confirmed, mainly C-glycosides, and antioxidant minerals and pectin, in flour. No clinical signs of toxicity or death were reported in the study. In the hyperlipidemia study model used, the analyzed substances, at all doses, notably decreased the lipid levels of TC, TG, LDL-c and VLDL-c and increase the HDL-c levels in the induced hyperlipidemic mice (p < 0.05). The results of the histopathological analysis showed that in the group only induced was identified the discrete presence of hepatic steatosis, in 2 animals at the analysis of 24 h, not being visualized in the groups treated with the substances evaluated. The results obtained in the present study suggest a hypolipidemic potential of the extract and flour, obtained from the fruit peel of Passiflora cincinnata Mast.


Assuntos
Passiflora , Passifloraceae , Camundongos , Animais , Passiflora/química , Farinha , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Etanol , Pectinas , Lipídeos
11.
Assay Drug Dev Technol ; 20(7): 300-316, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269233

RESUMO

Propolis is rich in natural bioactive compounds, and considering its importance for many skin therapies, emulgel was prepared. This study examines how a propolis extract (PE) and Passiflora edulis seed (PS) oil emulgel affect rat deep skin wound healing. Based on preset criteria of maximum drug content and optimum drug permeation through the stratum corneum along with drug retention in the skin layers, an optimized emulgel formula based on Box-Behnken factorial design was prepared and used for subsequent in vitro and in vivo evaluations. In vivo wound-healing activities of emulgel and control treatments were investigated in a rat model. The optimized emulgel formula exhibited superior healing activity compared with plain PE suspension-treated rats on day 14 of wounding. Histopathological investigations of hematoxylin and eosin and Masson's Trichrome-stained skin sections supported this effect. Emulgel promotes cutaneous wound healing through a variety of mechanisms, including anti-inflammatory through modulation of cytokines tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 production, and promotion of collagen fiber formation, all of which contribute to tissue remodeling. Furthermore, when compared with propolis suspension, emulgel showed significant antioxidant and anti-inflammatory effects. Emulgel significantly increased the skin's hydroxyproline level, antioxidant potential, wound contraction, increased penetration, and localized propolis deposition across the skin. Incorporation of PS oil into the emulgel accelerates the tissue regeneration process. The findings suggest that 5% propolis emulgel could be used as an alternative to treat wounds.


Assuntos
Passiflora , Própole , Cicatrização , Animais , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Colágeno/metabolismo , Colágeno/farmacologia , Citocinas/metabolismo , Citocinas/farmacologia , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/farmacologia , Hidroxiprolina/farmacologia , Interleucina-6/farmacologia , Passiflora/química , Passiflora/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Própole/farmacologia , Própole/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Cicatrização/efeitos dos fármacos
12.
Food Res Int ; 160: 111665, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076381

RESUMO

Passiflora is a highly diverse genus where taxonomic lack of consensus remains. This may be the reason why numerous studies do not specify to the infraspecific level the plant material used or lack consistency in the nomenclature of botanical formae of Passiflora edulis. Ultimately, this may contribute to inaccurate chemical composition and health effects attributed to different Passiflora edulis species and formae. Hence, this review aims to overcome these challenges by exploring the phytochemical profile, specific nutritional value and potential health benefits of purple passion fruit (PPF). PPF is often consumed fresh for its pulp (including seeds) or juice, either directly or added to food dishes. It is also used industrially to produce a wide range of products, where peels and seeds are abundant by-products, most often discarded or used in low-value applications. Herein, in a perspective of integral valorisation of the fruit, the potential use of all PPF fractions (peel, pulp and seeds) is discussed as a source of important macro and micronutrients, adequate to integrate a balanced and healthy diet. In addition, the phytochemical profile of such fractions is also discussed along with the associated in vitro biological activities (antioxidant, anti-inflammatory, antibacterial and antifungal) and in vivo beneficial effects in the management of several diseases (asthma, hypertension, osteoarthritis, diabetes and pulmonary fibrosis). In summary, this review gathers the current knowledge on the nutritional and phytochemical composition of PPF and highlights the potential of using all fractions as a source of ingredients in food formulations that promote health and well-being. At the same time, it also contributes to defining sustainable strategies for an integrated valorisation of this natural product.


Assuntos
Passiflora , Frutas/química , Promoção da Saúde , Valor Nutritivo , Passiflora/química , Compostos Fitoquímicos/análise
13.
Nutrients ; 14(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079920

RESUMO

Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg ß-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.


Assuntos
Antioxidantes , Passiflora , Antocianinas/análise , Antocianinas/farmacologia , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antioxidantes/análise , Carotenoides/análise , Carotenoides/farmacologia , Fibras na Dieta/análise , Frutas/química , Passiflora/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia
14.
An Acad Bras Cienc ; 94(suppl 3): e20211446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074429

RESUMO

Liqueur is an alcoholic beverage composed of a mixture of water, alcohol, sugar and substances that add flavour and aroma. Wild passion fruit is a product with good agricultural and nutritional characteristics, and is a low-cost, regional fruit that could be used to elaborate new products. The goal of this study was to develop passion fruit (Passiflora cincinnata Mast.) liqueurs and evaluate their chemical, physical and sensory characteristics. 5 formulations were prepared with defined pulp and syrup concentrations (F1, F2, F3, F4 and F5). The following physicochemical parameters were evaluated: alcohol degree (ºGL), density, pH, total titratable acidity, total soluble solids (TSS), reducing and non-reducing sugars and colour parameters. A sensory acceptance test was applied. The formulations F4 and F5, produced with 640g pulp/70ºBrix syrup and 500g pulp/55ºBrix syrup, respectively, showed the highest acceptance scores, probably due to their acid pH, high acidity and soluble solids values. In general, the beverages developed were considered feasible, aimed at aggregating value to a regional fruit and increasing family incomes. The high sensory acceptance indicated market potential for this aggregated value product.


Assuntos
Passiflora , Bebidas Alcoólicas , Frutas/química , Odorantes/análise , Passiflora/química , Paladar
15.
Food Funct ; 13(12): 6498-6509, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35621054

RESUMO

Passiflora setacea (PS) is a species of wild Brazilian passion fruit, rich in bioactive compounds. Scientific evidence suggests that food rich in polyphenols can modulate inflammation, thereby playing an important role in preventing chronic non-communicable diseases, such as type 2 diabetes (DT2) and cardiovascular diseases (CVD). This study aimed to investigate the effect of PS consumption on metabolic and inflammatory biomarkers in overweight male volunteers and to identify the underlying mechanism of action using an in vitro study using phenolic metabolites isolated from the plasma of volunteers at physiologically relevant concentrations. Volunteers participated in a double-blind, placebo-controlled (PB) study with two phases: phase I (acute study) and phase II (chronic study). In phase I, 15 volunteers ingested a single dose of 50 g, 150 g of PS pulp and PB in three different interventions. In phase II, nine volunteers ingested 50 g of PS or PB for 14 days. Blood samples were collected before (T0 h) and 3 h (T3 h) (phase I) or 15 days after (phase II) ingestion of PS or PB. Blood biochemical markers, HOMA IR, and inflammatory markers were analyzed and data on BMI, waist circumference, and consumption of polyphenol-rich foods were collected. Phenolic metabolites were extracted from plasma by solid-phase separation and were used to treat BV-2 cells stimulated by LPS or anacardic acid to assess p50, p65 and PPAR-γ activation. It was observed that the consumption of a single dose of PS juice significantly reduced basal insulin levels and HOMA IR. After prolonged consumption for two weeks, PS contributed to the reduction of circulating levels of IL-6. BV-2 cells treated with PS phenolic metabolites showed increased PPAR-γ activity, which resulted in an anti-inflammatory and anti-diabetic effect of PS metabolites. In conclusion, PS juice consumption exerts beneficial effects on inflammatory markers in overweight individuals, being a possible and important tool in the prevention of T2D and CVD in risk groups.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Passiflora , Biomarcadores , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Método Duplo-Cego , Humanos , Masculino , Microglia/metabolismo , Sobrepeso , Passiflora/química , Receptores Ativados por Proliferador de Peroxissomo , Fenóis/análise , Polifenóis/análise
16.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457262

RESUMO

In recent years, growing attention has been paid to the chemical composition of aerial parts extracts and the bioavailability of active compounds from different species of Passiflora genus [...].


Assuntos
Glicosídeos Cardíacos , Passiflora , Flavonoides , Glicosídeos , Passiflora/química , Extratos Vegetais
17.
Environ Sci Pollut Res Int ; 29(18): 27328-27338, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981396

RESUMO

The use of soil conditioners as bovine biofertilizer associated with mineral fertilization affect the physical and physicochemical quality of passion fruit. For fruit growth, post-harvest quality is crucial for production chain development, as it is the characteristic most used by the fresh consumption market for this fruit. In this sense, an experiment was carried out to investigate the effects of doses of bovine biofertilizer in the soil with and without nitrogen fertilization in the cultivation of yellow passion fruit. A randomized block design was adopted, with three replications in a 5×2 factorial scheme, referring to five doses of liquid bovine biofertilizer (B) diluted in water (A): 0% - control (0B + 4A); 25% (1B + 3A); 50% (2B + 2A); 75% (3B + 1A); and 100% (4B + 0A) with and without nitrogen fertilization applied to the soil. Urea was the nitrogen source used in this study. A total of 10 g plant-1 of N was applied monthly at 30 and 60 days after transplanting, and after that age, 20 g plant-1 was applied until the end of harvest. During the final phase of production and ripening, twelve fruits were harvested from each treatment in physiological maturation for physical and physicochemical characterization. The following analyses were performed: longitudinal diameter, transversal diameter, number of seeds per fruit, peel firmness, pulp yield, fruit peel percentage, pulp pH, soluble solids content; titratable acidity and soluble solids content/titratable acidity ratio. Data underwent analysis of variance by the F test means for nitrogen were compared by Tukey's test and means for bovine biofertilizer, by regression. Nitrogen enhances the positive effect of bovine biofertilizer on the postharvest quality of yellow passion fruit. The association of biofertilizer and nitrogen improves fruit quality in comparison to plants without these inputs, except for pulp yield and fruit peel percentage, which suffered isolated effects from the factors. High doses of biofertilizer, above 75 and 100%, reduce soluble solids content and increase titratable acidity. The bovine biofertilizer has promising effects, but it does not replace nitrogen fertilization on the postharvest quality of yellow passion fruit.


Assuntos
Passiflora , Animais , Bovinos , Frutas/química , Nitrogênio/análise , Passiflora/química , Sementes , Solo
18.
Planta Med ; 88(2): 152-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511622

RESUMO

Herbal medication used in the treatment of sleep disorders and anxiety often contain extracts of Valeriana officinalis or Passiflora incarnata. Valerenic acid in V. officinalis and apigenin, orientin, and vitexin in P. incarnata are thought to contribute to their therapeutic effect. It was the aim of this study to test whether these constituents of herbal extracts are interacting with the uptake of estrone 3-sulfate, pregnenolone sulfate, and dehydroepiandrosterone sulfate mediated by the uptake transporters organic anion transporting polypeptide 2B1 (OATP2B1) or organic anion transporting polypeptide 1A2 (OATP1A2). Madin-Darby canine kidney cells overexpressing OATP2B1 or OATP1A2 were used to determine the influence of the constituents on the cellular accumulation of the sulfated steroids. Subsequently, competitive counterflow experiments were applied to test whether identified inhibitors are also substrates of the transporters. Valerenic acid only interacted with OATP2B1, whereas apigenin, orientin, and vitexin interacted with OATP2B1 and OATP1A2. Competitive counterflow revealed that orientin is a substrate of both transporters, while apigenin was transported by OATP1A2 and vitexin by OATP2B1. In a next step, commercially available P. incarnata preparations were assessed for their influence on the transporters, revealing inhibition of transporter-mediated estrone 3-sulfate uptake. HPLC-UV-MS analysis confirmed the presence of orientin and vitexin in these preparations, thereby suggesting that these constituents are involved in the interaction. Our data indicate that constituents of P. incarnata may alter the function of OATP2B1 and OATP1A2, which could affect the uptake of other compounds relying on uptake mediated by the transporters.


Assuntos
Transportadores de Ânions Orgânicos , Passiflora , Compostos Fitoquímicos/farmacologia , Valeriana , Animais , Transporte Biológico , Cães , Transportadores de Ânions Orgânicos/metabolismo , Passiflora/química , Peptídeos , Valeriana/química
19.
Planta Med ; 88(5): 356-366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34344056

RESUMO

Hypertension is a chronic disease and a global health problem. Due to its high prevalence, it constitutes the most important risk factor for cardiovascular disease. Fruit peels from Passiflora edulis fo. flavicarpa are rich in bioactive natural compounds that may have action in hypertension. This study aimed to perform a fingerprinting analysis of Passiflora edulis fruit peel extract and evaluate its actions on the cardiovascular system in an in vivo model. The extract was obtained from the dried and powdered fruit peels of Passiflora edulis. Glycoside flavonoids were identified in the extract by HPLC-ESI-MSn. The extract showed a significant hypotensive effect after 28 days of treatment and improved vascular function in the mesenteric artery. This effect was verified by decreased vascular hypercontractility and increased vasorelaxant in response to sodium nitroprusside and acetylcholine. There was also a decrease in endothelial dysfunction, which can be attributed to nitric oxide's increased bioavailability. Thus, we hypothesize that all these effects contributed to a reduction in peripheral vascular resistance, leading to a significant hypotensive effect. These results are novel for fruit peels from P. edulis. Also, there was a decrease in plasma and cardiac malondialdehyde levels and an increase in glutathione, suggesting a reduction in oxidative stress, as well as an increase of anti-inflammatory cytokines such as IL-10 in the plasma. This study demonstrated that the extract can be a new source of raw material to be applied as food or medicine adjuvant for treating hypertension.


Assuntos
Sistema Cardiovascular , Hipertensão , Passiflora , Animais , Cromatografia Líquida de Alta Pressão , Frutas/química , Hipertensão/tratamento farmacológico , Passiflora/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Análise Espectral
20.
Sci Rep ; 11(1): 22064, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764405

RESUMO

Passiflora incarnata L. is a species of global pharmacological importance, has not been fully studied in the context of cultivation and management. It is known that silicon acts on abiotic stress and promotes phenols synthesis. The practice of mechanical damage is widely used in P. incarnata crops, and its interaction with silicon can have a significant influence on plant metabolism. Therefore, our objective was to investigate the effects of silicon and mechanical damage on photosynthesis, polyphenols and vitexin of P. incarnata. The experiment was conducted in a factorial design with SiO2 concentrations (0, 1, 2, 3 mM) and presence or absence of mechanical damage. It was found that mechanical damage improved photosynthetic performance at lower concentrations or absence of silicon. Moreover, this condition promoted an increasing in vitexin concentration when SiO2 was not provided. The application of 3 mM Si is recommended to increase polyphenols and vitexin, without harming dry mass of aerial part. The interaction between silicon and mechanical damage could be a tool to increase agronomic yield and commercial value of the P. incarnata crop.


Assuntos
Apigenina/metabolismo , Passiflora/metabolismo , Polifenóis/metabolismo , Dióxido de Silício/metabolismo , Apigenina/análise , Passiflora/química , Passiflora/crescimento & desenvolvimento , Polifenóis/análise , Silício/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...